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ABSTRACT: The central nervous system (CNS) is the major
area that is affected by aging. Alzheimer’s disease (AD),
Parkinson’s disease (PD), brain cancer, and stroke are the CNS
diseases that will cost trillions of dollars for their treatment.
Achievement of appropriate blood−brain barrier (BBB) pene-
tration is often considered a significant hurdle in the CNS drug
discovery process. On the other hand, BBB penetration may be a
liability for many of the non-CNS drug targets, and a clear
understanding of the physicochemical and structural differences
between CNS and non-CNS drugs may assist both research areas.
Because of the numerous and challenging issues in CNS drug
discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the
CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the
physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived
provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A
list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed
to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for
designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25−60 Å2), (ii) at least one (one or
two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than
three (zero or one) polar hydrogen atoms, (v) volume of 740−970 Å3, (vi) solvent accessible surface area of 460−580 Å2, and
(vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to
this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties
efficiently are presented.

KEYWORDS: Central nervous system, CNS, CNS drugs, non-CNS drugs, polar surface area, aliphatic amine, linear chains,
polar hydrogen, molecular volume, solvent accessible surface area, chemical substructures, physicochemical property profile,
chemoinformatics

Statistics indicate that by the year 2020, the United States
will have more than 20% of its population older than the

age of 65.1 It is estimated that central nervous system (CNS)
diseases affected by aging, such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), brain cancer, and stroke, will cost in
the trillions of dollars for their treatment. The health care
expenditures will increase from ∼15% of gross domestic
product (GDP) today ($14.6 trillion) to ∼29% in 20402

(http://www.nber.org/aginghealth/2008no4/w14361.html),
and therefore, access to high-quality, effective CNS drugs
remains an essential responsibility of the pharmaceutical
industry. The objective of this study is to improve the
understanding of differences between CNS and non-CNS
oral drugs in terms of the large number of physicochemical
properties that can be calculated using common molecular
modeling packages. However, for such an objective, it is very
important that the data set should be chosen carefully. Many
non-CNS drugs cross the blood−brain barrier (BBB) at

sufficient concentrations to produce CNS-related side effects,
such as drowsiness, headache, etc., and therefore were not
included in this type of analysis. Establishing a so-called “CNS
drug” may be challenging in some cases. The nervous system3 is
responsible for every activity taking place in all parts of the
body of every bilateral organism. The nervous system (Figure
1) can be divided into two parts: (i) the central nervous system
and (ii) the peripheral nervous system (PNS). The CNS is
comprised of the brain and the spinal cord and is encased safe
inside bone (skull and vertebrae). The PNS exists and extends
outside the CNS. The PNS relays sensory information to the
CNS and executes motor commands from the CNS. The CNS
integrates and processes the sensory information from the
sensory neurons of the PNS and sends back commands to the
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motor neurons. Neurons send information using neuro-
transmitters that stimulate various receptors. Some of these
receptors, like muscarinic acetylcholine receptors, are found
both on autonomic effector cells of PNS and in high densities
within the hippocampus, cortex, and thalamus of the CNS.4 In
such cases, and in diseases related to pain, allergy, muscle
relaxation, etc. that are related to the PNS, without a detailed
study of the mechanism of action, it may not always be easy to
pinpoint with certainty whether the action is coming from the
PNS or the CNS. In this article, such drugs were considered
CNS drugs if there was evidence of BBB penetration.
Components of the BBB. The BBB is a cellular and

multifunctional molecular barrier located at the capillaries in
the brain that restricts the passage of many chemical substances
and microscopic objects from the blood into the brain. The
important components of this barrier, besides the cellular lipid
barrier, are as follows.5,6

Endothelial Tight Junctions. The cerebral blood capillaries
of the brain are made of brain microvascular endothelial cells
(BMVEC). A major difference between BMVEC and normal
endothelial cells is the tight junctions. The tight junctions
prevent many water-soluble substances from freely passing
through the cells and entering the fluid environment of the
brain cells.
Enzymatic Barrier. Several enzymes on the lining of the

blood capillaries of the brain actively destroy or inactivate
undesirable peptides and other small molecules in the blood.
For example, circulating adenosine enters the brain from the
blood via BBB concentrative nucleoside transporter type 2
(CNT2) but does not have pharmacological effects in the brain,
because of the rapid inactivation at the BBB by adenosine
metabolizing enzyme. Conversely, the enzymatic BBB may
serve to activate prodrugs. Circulating L-DOPA enters the brain
via BBB large neutral amino acid transporter type 1 and is
rapidly converted to pharmacologically active dopamine.
Active Efflux Barrier. Certain drugs may cross the

endothelial barrier via free diffusion and undergo influx from
the blood to the brain compartment. However, this influx can
be immediately followed by active efflux from the brain back to
the blood if the drug is a substrate for one of many different
active efflux transporters (AETs) expressed within the brain
microvasculature. P-Glycoprotein (P-gp) is by far the most
prominent and studied AET. P-gp detoxifies cells by exporting
hundreds of chemically unrelated toxins and foreign small

molecules. It is a member of the superfamily of ATP-binding
cassette (ABC) transporters. Substrate promiscuity is a
hallmark of P-gp activity. Its X-ray structures, both apo and
drug-bound forms, have recently been determined.7 These
structures revealed an internal cavity of ∼6000 Å3 with a 30 Å
separation of the two nucleotide-binding domains. Apo and
drug-bound P-gp structures have portals open to the cytoplasm
and the inner leaflet of the lipid bilayer for drug entry. The
inward-facing conformation represents an initial stage of the
transport cycle that is competent for drug binding.
It is important to note that physicochemical property

modulation alone during lead optimization cannot overcome
all the BBB components; it will help mainly to optimize the
passive diffusion and the P-gp activity. There are several articles
covering the pharmacophores8 and the quantitative definition9

of P-gp substrates that may be useful for converting a P-gp
substrate to a nonsubstrate.

Alternate Drug Delivery in the Brain. Essentially 100%
of macromolecules and 98% of small molecule drugs10 do not
cross the BBB. Extensive research is underway for delivering
such drugs10,11 using transcranial delivery, transnasal delivery,
BBB disruption, endogenous BBB transporters, etc. Though
such methods may have a huge impact on CNS drug discovery
in the future, any detailed discussion of those methods is
outside the scope of this work. However, this work would not
be complete unless the recent approaches in using P-gp
inhibitors to improve the BBB penetration were men-
tioned.12,13 The finding that the clinically applied Ca2C
channel blocker verapamil inhibits drug efflux and restores
drug sensitivity in multi-drug-resistant leukemia cell lines14 gave
rise to the idea that compounds that inhibit P-gp might reverse
P-gp-mediated multidrug resistance in patients or improve the
delivery of CNS drugs across the BBB, which otherwise failed
because of efflux. However, such an approach may have to be a
monitored therapy, because P-gp dysfunction can both induce
the increased level of accumulation of toxins, as in Parkinson’s
disease, and weaken the ability of the brain to efflux proteins, as
in Alzheimer’s disease.

Physicochemical Properties of CNS Drugs, the Prior
Art. A number of reports have attempted to establish selected
physiochemical property differences in CNS drugs. More than
100 years ago, Overton15 and Meyer16 called attention to the
relationship between the lipophilic character of simple neutral
organic compounds and their narcotic action. Hansch et al.17

discussed the hydrophobic−hydrophilic balance necessary to
avoid CNS-related issues in antihistamines and the optimal
logP (octanol−water partition coefficient) for drugs that
penetrate or are precluded from penetrating the brain. This
trend continued in many other publications, contributing to our
understanding of BBB penetration and brain exposure.
Abraham et al.18−20 developed various physicochemical
property-based equations to estimate log BB (log of the
brain/blood ratio). One simple equation derived was log BB =
0.055 + 0.203 × logPoct − 0.507∑α2H − 0.500∑β2H, where
logPoct is the water−octanol partition coefficient, ∑α2H is the
overall hydrogen bond acidity, and ∑β2H is the overall
hydrogen bond basicity. van de Waterbeemd et al.21 studied the
estimation of BBB penetration by plotting various combina-
tions of two physicochemical properties, such as molecular size,
shape, H-bonding descriptors, and polar surface area, and then
formulated various guidelines for use by medicinal chemists,
e.g., polar surface area (PSA) of ≤90 Å2 and molecular mass of
<450 Da. With respect to molecular shape, it was concluded

Figure 1. Schematic diagram of the nervous system (NS). The CNS is
encased safe in bone (skull and vertebrae). The PNS exists and
extends outside the CNS. The PNS relays sensory information to the
CNS and executes motor commands from the CNS. The CNS
integrates and processes the information from the sensory neurons and
sends commands to the motor neurons.
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Table 1. List of Computed Physicochemical and a Few PK Properties and Their Qualifying and Preferred Ranges in CNS and
Non-CNS Oral Drugs

rangesb in non-CNS oral drugs ranges in CNS drugs

property description (sourcea) QL PL PU QU QL PL PU QU

Human Oral Absorption human oral absorption (QP) 1 3 3 3 2 3 3 3

Percent Human Oral
Absorption

percent of human oral absorption (QP) 10 77 100 100 61 95 100 100

#acid no. of carboxylic acid groups (QP) 0 0 0 2 0 0 0 0

#amide no. of amide groups (QP) 0 0 0 1 0 0 0 1

#amidine no. of amidine groups (QP) 0 0 0 0 0 0 0 0

#amine no. of basic amines (QP) 0 0 0 1 0 1 1 2

SASA solvent accessible surface area (QP) 265 459 660 1023 348 487 620 798

Molecular_SurfaceArea topology-based molecular surface area (AP) 95 230 365 646 144 236 320 426

AREA solvent accessible surface area (TP) 269 419 613 1028 319 457 577 735

FISA SASA on N, O, and H attached to heteroatoms
(QP)

0 81 176 306 0 0 64 176

PSA polar surface area (solvent accessible) (TP) 0 89 185 317 0 2 64 171

Molecular_Polar Surface
Area

topology-based molecular polar surface area (AP) 20 36 96 220 3.2 23 56 97

PSA_Q van der Waals surface area of polar nitrogen and
oxygen atoms (QP)

0 61 120 194 3.8 12 54 109

FOSA SASA on saturated carbon and attached
hydrogen (QP)

0 69 304 667 16 178 314 464

PISA π component of SASA (QP) 0 0 138 371 0 160 292 343

WPSA weakly polar component of the SASA (halogens,
P, and S) (QP)

0 0 0 144 0 0 0 126

C-Het-Ratio ratio of C atom and non-C, non-H atoms (CP) 0 1.1 2.9 7.8 1.2 2.1 4.3 11

Carbon Atoms no. of C atoms (CP) 2 10 20 36 6 16 21 25

Nonpolar H atoms no. of H atoms attached to C (CP) 1 6 19 46 5 17 26 31

AtomCount total no. of atoms, including H (TP) 9 26 49 92 20 29 44 63

PolarH-Atom H atoms not attached to C (CP) 0 0 2 6 0 0 1 3

HeteroAtom no. of non-C and non-H atoms (CP) 1 3 7 14 1 3 5 8

#NandO no. of N and O atoms (QP) 0 3 6 13 1 2 4 7

#nonHatm no. of non-H atoms (QP) 4 17 27 46 8 19 25 30

Num_Atoms no. of non-H atoms (AP) 4 17 27 46 9 19 25 30

Br_Count no. of Br atoms (AP) 0 0 0 0 0 0 0 0

C_Count no. of C atoms (AP) 2 10 20 36 6 16 21 25

Cl_Count no. of Cl atoms (AP) 0 0 0 2 0 0 0 1

F_Count no. of F atoms (AP) 0 0 0 2 0 0 0 1

H_Count no. of H atoms (AP) 4 8 21 50 7 17 26 31

I_Count no. of I atoms (AP) 0 0 0 0 0 0 0 0

N_Count no. of N atoms (AP) 0 0 2 6 0 1 2 4

O_Count no. of O atoms (AP) 0 2 4 11 0 1 2 4

P_Count no. of P atoms (AP) 0 0 0 0 0 0 0 0

S_Count no. of S atoms (AP) 0 0 0 2 0 0 0 1

#in34 no. of atoms in three- or four-membered rings
(QP)

0 0 0 4 0 0 0 0

#in56 no. of atoms in five- or six-membered rings (QP) 0 9 16 24 5 11 17 24

#noncon no. of atoms not able to form conjugation in
nonaromatic rings (QP)

0 0 2 14 0 0 4 10

QPlogBB brain/blood partition coefficient (QP) −3.1 −1.5 −0.36 0.78 −1.2 −0.06 0.75 1.2

VOLSURF_BBB a qualitative blood−brain permeability parameter
(TP)

−2.4 −0.81 0.3 1.5 −0.63 0.19 1.1 1.6

BondCount total no. of bonds in a molecule (TP) 12 29 53 98 19 30 47 65

Num_AromaticBonds no. of bonds in aromatic rings (AP) 0 0 6 18 0 10 15 16

Num_BridgeBonds no. of bridge bonds, naphthalene does not have
any (AP)

0 0 0 0 0 0 0 10

Num_Bonds no. of bonds between non-H atoms (AP) 7 17 29 53 8 18 26 34

QPPCaco apparent Caco-2 cell permeability (QP) 0 0 198 3975 0 0 810 3269

VOLSURF_Caco2 a qualitative Caco-2 cell permeability parameter
(TP)

−1.7 −0.06 0.85 1.59 −0.04 0.34 1 1.7

QPPMDCK predicted apparent MDCK cell permeability
(nm/s) (QP)

0 0 133 5302 0 0 634 5899

CIQPlogS log of conformation-independent solubility (QP) −9.6 −5.1 −2.4 0.14 −6.3 −4.2 −2.3 −0.36
CNS a qualitative CNS activity parameter, from −2 to

2 (QP)
−2 −2 −1 1 −2 0 1 2

Dipole computed dipole moment (QP) 0.96 3.7 7.7 12 0.67 1.1 3.9 8.9
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Table 1. continued

rangesb in non-CNS oral drugs ranges in CNS drugs

property description (sourcea) QL PL PU QU QL PL PU QU

Glob a globularity descriptor (1 for a sphere) (QP) 0.73 0.81 0.88 0.94 0.77 0.82 0.88 0.93

HB-Acceptor H bond acceptors without protonating bases or
ionizing acids, no lone pair count (CP)

0 2 5 12 1 1 3 6

accptHB estimated no. of hydrogen bonds that would be
accepted from the solvent water (QP)

0 4 8.2 16.1 1 2.8 5.2 8.3

Acceptor no. of hydrogen bond acceptors in a molecule
(TP)

0 3 5 11 0 0 2 5

Num_H_Acceptors no. of hydrogen bond acceptors in a molecule
(AP)

0 2 5 12 1 2 3 6

HB-Donor no. of H bond donors without protonating bases
or ionizing acids (CP)

0 0 2 6 0 0 1 3

donorHB estimated no. of hydrogen bonds that would be
donated to the solvent water (QP)

0 1 2.5 5 0 0 1 3

Donor no. of hydrogen bond donors in a molecule (TP) 0 1 2 7 0 1 2 3

Num_H_Donors no. of hydrogen bond donors according to the
supplied structure without protonating bases or
ionizing acids (AP)

0 1 2 5 0 0 1 2

logD2 octanol−water logP at pH 2 −4 0.49 3.7 6.5 −1.6 0.9 2.8 3.8

logD74 octanol−water logP at pH 7.4 −4.9 0.28 3.4 6.4 −0.55 1.2 3.1 5.5

ALogP_A atom-based logP calculator (AP) −2.5 1 4.2 7.8 −0.31 2.1 4.2 6.1

AlogP atom-based logP calculator (CP) −2.8 0.82 4 7.4 −0.31 2.5 4.6 5.9

QPlogPo/w octanol−water logP (QP) −2.6 0.76 4 7.3 −0.16 2.5 4.7 6.0

clogP octanol−water partition coefficient, using Hansch
and Leo’s clogP method (TP)

−4.4 0.8 4.2 7.4 −0.66 2.1 4.4 6.1

MlogP octanol−water partition coefficient, Moriguchi
logP (TP)

−2.9 0.86 3.2 −5.8 0.39 1.8 3.5 5.3

Molecular_Solubility solubility in log(moles/liter) (AP) −9.1 −5.6 −2.7 0.93 −7.2 −5.9 −3.4 −1
QPlogS solubility in log(moles/liter) (QP) −9.4 −4.9 −2.3 0.47 −6.5 −4.6 −2.5 −0.42
VOLSURF_Soly solubility in log(moles/liter) (TP) −8.2 −4.9 −3.1 −0.47 −6.1 −5.2 −3.7 −1
ALogP_MR molar refractivity (AP) 15 68 108 178 35 76 103 129

MolarRefrac molar refractivity (CP) 14 66 109 178 33 76 104 127

CMR molar refractivity (TP) 1.6 6.3 11 18 3.5 7.8 10.4 12.6

Qppolrz predicted polarizability (Å3) (QP) 10 25 41 71 14 28 38 49

MW molecular weight (TP) 75 241 393 671 141 250 353 452

#stars drug likeness penalty; the higher the value, the
less druglike the molecule (QP)

0 0 0 8 0 0 0 3

pKa_BasicSite pKa of the most basic atom (AP) −2 0 4.5 11 0 7.9 10.7 10.9

QPlogKhsa prediction of binding to human serum albumin
(QP)

−1.80 −0.67 0.24 1.42 −1 0.04 0.78 1.04

VOLSURF_ProtBinding calculated plasma protein binding (%) (TP) −26.3 51 86 129 24 73 98 108

Num_RingAssemblies no. of ring assemblies, note that for naphthalene,
anthracene it is 1 (AP)

0 1 2 4 0 1 2 3

RingCount no. of rings in a molecule (TP) 0 2 3 5 1 2 3 5

Num_Rings no. of rings in a molecule (AP) 0 2 3 5 1 2 3 5

Num_Rings3 no. of three-membered rings (AP) 0 0 0 0 0 0 0 0

Num_Rings4 no. of four-membered rings (AP) 0 0 0 1 0 0 0 0

Num_Rings5 no. of five-membered rings (AP) 0 0 0 2 0 0 0 2

Num_Rings6 no. of six-membered rings (AP) 0 1 2 4 0 1 2 4

Num_Rings7 no. of seven-membered rings (AP) 0 0 0 0 0 0 0 1

Num_Rings8 no. of eight-membered rings (AP) 0 0 0 0 0 0 0 0

Num_Rings9Plus no. of nine- and higher-membered rings (AP) 0 0 0 0 0 0 0 0

Num_Aromatic Rings no. of aromatic rings (AP) 0 0 1 3 0 1 2 3

Num_RingBonds no. of bonds in rings (AP) 0 11 18 28 5 15 22 27

Num_Rotatable Bonds no. of rotatable bonds (hydrogen suppressed)
(AP)

0 1 5 12 0 1 4 8

Num_Chains no. of unbranched chains to cover all the nonring
bonds in a molecule (AP)

1 4 7 15 1 2 4 7

#rotor no. of rotatable bonds (without CX3, alkene,
amide, small ring) (QP)

0 2 6 17 0 3 6 8

RotBonds no. of rotatable bonds (hydrogen suppressed)
(TP)

0 3 7 14 0 1 4 8

RuleOfFive no. of violations of Lipinski’s rule of five (QP) 0 0 0 2 0 0 0 1

RuleOfThree no. of violations of Jorgensen’s rule of three (QP) 0 0 0 2 0 0 0 1

Num_StereoAtoms no. of chiral atoms (AP) 0 0 0 0 0 0 1 4

Volume solvent accessible volume ( Å3) (QP) 410 763 1178 2082 492 830 1104 1388
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that the principal length/width ratio should be <5. The authors
also pointed out that poor brain uptake often may be related to
P-glycoprotein efflux. Kelder et al.22 derived the dynamic polar
surface areas of 776 CNS active compounds that went to phase
II clinical trials. Their prescribed value for brain penetration was
60−70 Å2. They also showed that the dynamic and static polar
surface areas are highly correlated properties. Ghose et al.23

studied computed physicochemical properties [atom-based
logP (AlogP), atom-based molar refractivity (AMR), molecular
mass, and the total number of atoms] in different classes of
clinical-trial CNS compounds (depressant, psychotic, and
hypnotic agents). The preferred and qualifying property ranges
for these CNS drugs were provided, where the “preferred”
range was derived from the most densely populated range
covering 50% of the reference compounds and the qualifying
range covered 80% of the reference compounds. Clark24−26

described the early development of rapid computational
methods applicable to a large number of compounds for the
prediction of log BB, including many historical “rules of
thumb”. Norinder and Haeberlein27 provided an excellent
review of several computational protocols for modeling the
transport of drugs across the BBB, including quantum-
mechanics-based approaches, molecular-mechanics-related
techniques, and two-dimensional-graph procedures. Mahar
Doan28 studied the passive permeability and P-gp-mediated
efflux and 18 physicochemical properties of 48 marketed CNS
drugs and 45 non-CNS drugs. They concluded that the CNS
drug set had fewer hydrogen bond donors, fewer positive
charges, greater lipophilicity, smaller polar surface areas, and
reduced flexibility. For CNS delivery, a drug should ideally have
an in vitro passive permeability of >150 nm/s and should not
be a P-gp substrate (B → A/A → B ratio of <2.5). Adenot et
al.9 developed several discriminating models between CNS and
non-CNS compounds, including the P-gp substrate. They used
1336 BBB-crossing compounds, 259 non-BBB-crossing com-
pounds, and 91 P-gp substrates from the WDI (World Drug
Index, http://thomsonreuters.com/products_services/science/
science_products/a-z/world_drug_index/). Pajouhesh et al.29

reviewed the various works related to CNS drug properties and
concluded that molecular mass, lipophilicity, and the number of
hydrogen bond donors and acceptors for CNS drugs had
smaller ranges compared to those of the general therapeutics.
Rishton et al.30 reviewed the computational approaches about
the prediction of BBB permeability with a comprehensive
analysis of the ACDLabs (http://www.acdlabs.com) log BB
prediction module, using various literature inhibitors and drugs
for CNS targets. Hitchcock and Pennington31 reviewed brain
exposure, focusing on a few physicochemical properties that
influence brain partitioning [molecular mass, computed logP
(clogP), PSA, and number of hydrogen bond donors (HDs)] of
many investigational CNS agents and their analogues. They
provided the mean values of these properties for the 25 top-
selling drugs in 2004 and also gave suggested limits and
preferred ranges for these properties. Manallack32 studied the
pKa distribution in CNS and non-CNS drugs. He concluded

that for CNS drugs the acidic pKa values rarely fell below 6 and
the basic pKa values were not >10.5. Wager et al.33 recently
conducted a thorough analysis of six physicochemical proper-
ties for 119 marketed CNS drugs and a set of 108 Pfizer CNS
candidates. The following six physicochemical properties were
examined: ClogP, ClogD, molecular mass, TPSA, HBD, and
pKa. The CNS drug space defined by these six physicochemical
properties is quite broad, but this article points to optimal
ranges for each of these properties. On the basis of the drug set,
the following median values were found: ClogP = 2.8, ClogD =
1.7, molecular mass = 305.3 Da, TPSA = 44.8 Å2, HBD = 1, and
pKa = 8.4. These authors also proposed a multiproperty
optimization scheme based on six prescribed property range
violations.34,35 Such a scoring scheme will be especially useful in
the virtual screening of compounds.
Many of these earlier studies suffered from a number of

drawbacks. (1) The size of the data set was relatively small. (2)
The analysis was typically conducted using investigational
compounds and nonapproved drugs. (3) Non-CNS drugs were
most often neglected in the analysis. (4) The computed
property source was not well documented.
When we were building the learning set for this study, the

main question was whether to include clinical candidates in the
study or to use only the approved drugs. Using all compounds
that entered into clinical trials offers the advantage that the
conclusions would be statistically more robust. However, the
disadvantage was that approximately 90% of the compounds in
the analysis failed during clinical evaluation and their inclusion
may significantly distort the conclusions.
In our analysis, only approved drugs were used. Both CNS

and non-CNS drugs were used in a comparative fashion. Only
well-documented properties were included in the analysis. The
focus was on simpler physicochemical properties and not the
complex ADME properties. “Rules” were derived from the
difference in the shape or gradient of the distribution curves as
well as from recursive partition (RP) trees. Some of the
graphing or analysis techniques used for simultaneously
keeping track of multiple properties were discussed. The
substructural elements that made the current CNS drug set
were also identified. The main objective of this analysis was to
provide the direction of various physicochemical property
changes that may help lead selection and lead optimization for
CNS activity.

■ RESULTS AND DISCUSSION

The vendor-provided property names with a short description
and the qualifying and preferred ranges for CNS and non-CNS
oral drugs are listed in Table 1. This table will be useful for
designing both CNS and non-CNS drugs. The same properties
computed using different software programs are in the
proximity of each other in Table 1 for a better comparison.
Many properties directly related to the molecular structure, like
the number of hydrogen bond donors and hydrogen bond
acceptors and the number of rotatable bonds, might be
calculated differently by different programs. A summary of

Table 1. continued

rangesb in non-CNS oral drugs ranges in CNS drugs

property description (sourcea) QL PL PU QU QL PL PU QU

VOLUME_T molecular volume (TP) 346 678 1047 1863 461 736 966 1248
aAbbreviations: QP, Schrodinger/QikProp; TP, Tripos; AP, Accelrys; CP, internal program. bAbbreviations: QL, qualifying lower limit; PL,
preferred lower limit; QU, qualifying upper limit; PU, preferred upper limit.
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computed values and their rules, which might themselves be
debatable, and the distribution of various types of properties are
described in the following sections.
Common Functional Groups. The parameter #amide

computed in QP (QikProp, http://www.schrodinger.com/
products/14/17/) is the number of nonconjugated amides.
The amide group was in fact ubiquitous in the approved drugs.
More than one-third of non-CNS oral drugs and a little less
than one-third of CNS drugs had an amide group in their
structure. This finding was not unexpected considering their
ease of synthesis. The number of unsubstituted amides
(−CONH2) in both drug classes was low (6 in CNS and 18
in non-CNS oral). Monosubstituted amides were somewhat
favored in the non-CNS oral drug class compared with
disubstituted amides (154 vs 92). The opposite trend was
observed in the CNS drugs: 37 monosubstituted amides versus
54 disubstituted amides. This might be a direct reflection of the
fact that a smaller polar surface area is preferred for CNS drugs.
The parameter #amine computed in QP was the number of
nonconjugated amines. The basic aliphatic amines were not as
common in the non-CNS oral drugs as they were in the CNS
drugs. Approximately 70% of CNS drugs had an aliphatic amine

compared to 30% of non-CNS oral drugs (Figure S1 of the
Supporting Information). The carboxylic acid group was not
very common in the CNS drugs, because only 3−4% of CNS
drugs had a carboxylic acid group, whereas 25% of non-CNS
oral drugs contained a carboxylic acid group.

Atom Count. Atom counting parameters were omnipresent
in most property calculators. Not only are such functionalities
easy to implement, but they also can be used directly during the
lead optimization process. When using the total atom count,
one should ensure it includes the hydrogen atom in the
calculation. Figure 2 illustrates the distribution of all atoms,
including hydrogen and excluding hydrogen. The distributions
suggested that both CNS and non-CNS drugs had uneven bell-
shaped distributions. The major difference was in the slope of
the curves and the locations of the maxima. The distribution
clearly indicated that a total of 40−49 atoms and 20−24 non-
hydrogen atoms were optimal for CNS drugs. Figure 3
illustrates the distribution of the number of heteroatoms
(non-carbon, non-hydrogen) and the distribution of carbon
atoms. The distribution indicated that four to five heteroatoms
were noticeably preferred, but this number can easily reach as
high as seven. It was established that 20−23 carbon atoms may

Figure 2. Distributions of the total number of atoms, including hydrogen (ATOM_T), and the number of non-hydrogen atoms (NONH_Q) in the
non-CNS (brick columns) and CNS (vertically striped columns) drugs. The distribution indicates that 40−49 (A) total atoms and 20−24 non-
hydrogen atoms (B) may be the best region for CNS drugs. All property distribution curves were generated using internally modified AP
components, where each nonterminal column includes the value at which it was centered and anything less than the next bin. The left terminal
column also includes all points below the bin, and the right terminal column includes all points higher than the last bin. In all figures, _A represents
AP, _T represents TP, and _Q represents QP.

Figure 3. Distributions of the number of heteroatoms (non-C and non-H) (HET_CP) and the number of carbon atoms (CARBON_CP) in non-
CNS and CNS drugs. The distributions indicate that four to seven heteroatoms (A) and 16−23 carbon atoms (B) may be the best region for CNS
drugs.

ACS Chemical Neuroscience Research Article

dx.doi.org/10.1021/cn200100h | ACS Chem. Neurosci. 2012, 3, 50−6855

http://www.schrodinger.com/products/14/17/
http://www.schrodinger.com/products/14/17/


be preferred, but the range can safely be broadened to 16−23.
Figure 4 shows the distribution of the number of oxygen and
nitrogen atoms combined and the number of polar hydrogen
atoms. Clearly, two to five nitrogen and oxygen atoms are the
best range for CNS drugs. When the nitrogen and oxygen
atoms are counted separately (Figure S2 of the Supporting
Information), one or two nitrogen atoms and zero to two
oxygen atoms may be optimal for successful CNS drugs.
Similarly, zero or one polar hydrogen atom may be sufficient
for CNS drugs.
H Bond Acceptors and Donors. Counting hydrogen

bond acceptors and donors was not a straightforward process. A
nitrogen atom may have multiple hydrogen atoms attached and
therefore may form multiple hydrogen bonds. Similarly, an
electronegative atom may have multiple lone pairs and may
form more than one hydrogen bond in a suitable environment.
A basic nitrogen atom may be protonated and become a
hydrogen bond donor, rather than of a hydrogen bond
acceptor. Many such issues complicate the counting and
assignment of hydrogen bond acceptors and hydrogen bond
donor groups. The best method for addressing these issues was
to study the rules followed in the property calculator and
benchmark a reference set with the calculator that was used.
One recommendation is that one should never use the
benchmark derived from one calculator to judge similar

properties using a different calculator. Figure 5 shows the
distribution of hydrogen bond acceptors and donors as
calculated by the AP (Accelrys Pipeline Pilot Component
Collections, http://www.accelrys.com/products/pipeline-pilot/
component-collections.html) molecular property calculator.
According to the AP calculator, the number of HB-Acceptors
is the number of heteroatoms (oxygen, nitrogen, sulfur, and
phosphorus) with one or more lone pairs, excluding atoms with
positive formal charges, amide and pyrrole-type nitrogens, and
aromatic oxygen and sulfur atoms in heterocyclic rings.
Similarly, the number of HB-Donors is the number of
heteroatoms (oxygen, nitrogen, sulfur, and phosphorus) with
one or more attached hydrogen atoms. Note that according to
these definitions, water has one hydrogen bond acceptor and
one hydrogen bond donor. These definitions are different from
the Lipinski definitions where primary amines are counted as
two hydrogen bond donors. Once these differences have been
noted, it is important to know how much the distribution
differed according to the different definitions. Figure 5 and
Figure S3 of the Supporting Information show the distributions
of hydrogen bond acceptors and donors in the CNS and non-
CNS oral drugs. The distribution differed in terms of not only
the percentage of occurrence for different values but also the
locations of the maximum, which also varied significantly using
different software. According to the AP calculator, the hydrogen

Figure 4. Distributions of the number of oxygen and nitrogen atoms (N and O_Q, respectively) (A) and the number of polar hydrogen atoms
(POLARH_CP) (B) in non-CNS and CNS drugs. The distributions indicate that four or five oxygen and nitrogen (combined) atoms may be the
best region, but it can be broadened to two to seven atoms.

Figure 5. Distributions of the number of hydrogen bond acceptors (HAccptr_A) (A) and the number of hydrogen bond donors (HDonors_A) (B)
in non-CNS and CNS drugs. The distribution indicate that two or three hydrogen bond acceptors and zero or one hydrogen bond donor may be the
best ranges for the CNS drugs.
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bond acceptor peak was at three for the CNS drugs; according
to TP (Tripos property calculator, http://www.tripos.com/
index.php?family=modules,SimplePage,,,&page=sybyl_ligand_
based_design), the value was two, and according to QP it was
four. TP protonates several basic nitrogen atoms, and QP tries
to calculate the number of hydrogen bonds with the solvent
water, which is very close to counting the number of lone pairs
available for hydrogen bond formation. For hydrogen bond
donors, AP showed the maximum at one and zero being almost
equally populated. TP showed the maximum at two, with one
being a close competitor. QP showed the maximum at zero and
one being the next populated area. When the distribution
differences with the non-CNS oral drugs are considered, the
best ranges to target for the hydrogen bond acceptor are two to
three for AP, three to four for QP, and one to two for TP. For
hydrogen bond donors, these ranges are zero to one, one to
two, and zero to one, respectively.
Molecular Size-Related Parameters (molecular weight

and volume). Molecular weight may be one of the few
parameters that was consistently computed by all the software.
On the other hand, the definition of volume can refer to either
solvent accessible volume or molecular volume. The solvent
accessible volume is larger than the molecular volume. Even

though TP and QP both claimed to compute the solvent
accessible surface area, the volume computed by TP was
considerably smaller than the volume computed by QP. The
distribution of MW and the TP volume is shown in Figure 6.
These distributions indicate that the range of 300−350 was the
best molecular weight region for CNS drugs, even though the
maximal population range for non-CNS oral drugs was the
range of 300−400 (with considerable overlap). The smaller size
of CNS drugs was also reflected in the volume parameter. The
TP-computed molecular volume showed the most populated
range was from 800 to 1000 Å3 for the CNS drugs. For the
non-CNS oral drugs, the most populated molecular volume
range was from 1000 to 1200 Å3. In the case of CNS drugs, the
peaks were considerably sharper than those for non-CNS oral
drugs. According to QP, the most populated volume range for
CNS drugs was 1000−1200. The non-CNS oral drugs have a
fairly flat distribution from 800 to 1400 (Figure S4 of the
Supporting Information).

Molecular Surface Area (total and polar surface
area). Comparison of the molecular surface area or polar
surface area should be done with caution because there are
three common types of molecular surfaces: (i) topological
molecular surface area, which was derived from the atomic

Figure 6. Distributions of molecular volume and molecular weight in the non-CNS and CNS drugs. The distributions indicate that the range of
300−350 was the best molecular weight region for CNS drugs even though the maximal population range for non-CNS oral drugs is the range of
300−400. The smaller size of CNS drugs was also reflected in the volume. The TP-computed molecular volume showed the most populated range
was from 800 to 1000 for the CNS drugs. For the non-CNS oral drugs, the most populated range was from 1000 to 1200. In the case of CNS drugs,
the peaks are considerably sharper than that of non-CNS oral drugs.

Figure 7. Distributions of solvent accessible surface areas in non-CNS and CNS drugs. The overall distributions of solvent accessible surface area
differed noticeably not only in the location of the most populated bin but also in the relative population of the bins. The solvent accessible surface
computed by Tripos showed a more noticeable difference between CNS and non-CNS drugs. According to this distribution, the CNS drugs have a
considerably higher population in the range of 480−600.
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connectivity and independent of the conformation used, (ii)
molecular surface area derived from the van der Waals surface
of a three-dimensional (3D) conformation, and (iii) solvent
accessible surface area (SASA), where an approximate water
dimension radius of 1.4 Å was enclosed over a 3D
conformation to estimate the surface area. These computed
surfaces vary considerably from one another. Even the values of
SASA computed by TP or QP differed considerably in their
distribution (Figure 7). The distribution of TP-computed SASA
was slightly more discriminatory in differentiating CNS from
non-CNS drugs, where the distribution of the CNS drugs had a
considerably higher population in the range of 480−600. The
polar surface area had three parallel counterparts as the SASA.
The topological polar surface areas computed by AP or QP

were the most discriminatory properties in differentiating CNS
drugs from non-CNS drugs (Figure 8). A small polar surface
area of 20−60 for MPSA_A or 20−80 for PSA_Q was favored
for the CNS drugs, while a larger polar surface area (>80) was
preferential for non-CNS drugs.

Number of Rings and Ring Assemblies. All the software
programs were in agreement in counting the total number of
rings and ring assemblies. Further, the distribution was
approximately identical in both the CNS and non-CNS drugs
(Figure 9) and clearly showed that the total number of rings
should be no more than three, and the number of aromatic
rings and ring assemblies (e.g., naphthalene equals one) should
be no more than two.

Figure 8. Distributions of topological polar surface areas in the non-CNS and CNS drugs. The topological polar surface areas were more
discriminatory for CNS and non-CNS drugs over the solvent accessible polar surface area. These properties showed a noticeable difference between
CNS drugs and non-CNS drugs. A small polar surface area (20−60 for MPSA_A and 20−80 for PSA_Q) was favored for CNS drugs, and a larger
polar surface area (>80) was favored for the non-CNS drugs.

Figure 9. Number of rings and ring assemblies in CNS and non-CNS drugs. Even though the numbers of rings and ring assemblies were among the
least discriminatory properties between CNS and non-CNS drugs, three or fewer rings and two or fewer aromatic rings and assemblies were the ideal
regions for both CNS and non-CNS drugs.
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Octanol−Water Partition Coefficient (logP and
logD). The distributions of logP values (Figure 10) computed
from Tripos (clogP), Accelrys (AlogP), and QikProp were
fairly consistent and were among the least discriminatory
properties for differentiating between CNS drugs and non-CNS
drugs. It was unexpected that the largest population of CNS
drugs was in the logP range of 4−5. An accurate calculation of
logD is further complicated by the difficulty of accurately
estimating the pKa of a molecule.36 However, logD is still a
widely accepted parameter to use during the lead optimization
process. LogD distributions at both pH 2 and 7.4 showed that
the largest population for CNS drugs was from two to three
(Figure 11). When compared with logP, the distribution
suggested that CNS drugs were more hydrophobic compounds
with a solublizing basic aliphatic amine group.

Chemical Makeup of the CNS Drugs. The critical
substructural elements of the CNS drugs are listed in Table
2. These substructures occurred in ≥5% in CNS drugs. The
percentage of occurrence alone may be useful for the design or
optimization of a CNS drug. However, we also provided the
percentage of occurrence of each fragment in the non-CNS
drugs, which may be useful as a secondary parameter.
Fragments that occurred frequently in the CNS drugs and
less frequently in the non-CNS drugs may be a clear choice.
Even though a benzene ring is a perfect choice for a CNS drug,
it cannot be the only substructure, because it needs to satisfy
other physicochemical requirements and more importantly it
should have sufficient binding affinity with the biological target.

Graphical Representations of Multiple Properties
Using a Radar Chart. The qualifying or the 95% property

Figure 10. LogP values computed by different methods, in CNS and non-CNS drugs. The logP distributions determined by different methods were
fairly consistent. These properties are among the least discriminatory properties for differentiating between CNS and non-CNS drugs.

Figure 11. Computed logD values at pH 2 and 7.4 in CNS and non-CNS drugs. Even though the most populated range for logP in CNS drugs was
between 4 and 5, logD values at both pH 2 and 7.4 were between 2 and 3.
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Table 2. Important Substructures in the Chemical Makeup of CNS Drugs

†C stands for CNS preferred. N stands for non-CNS preferred. E stands for equally preferred.
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ranges (Table 1) were important to identify if the test
compound’s property profile was within a reasonable range.
The preferred or 50% property ranges (Table 1) on the other
hand may help one to decide the direction of a change in
property that might increase drugability during lead optimiza-
tion. It might not be easy to follow multiple properties of a
molecule without a graphical approach. The Radar chart
provided a 360° snapshot view of the profile using as many as
10−15 properties. There are two types of Radar charts that may
be useful. The simpler Radar charts use a single range for each
property, and the objective is to determine if the test properties
fall within the qualified ranges. Figure 12 illustrates the
properties of two approved CNS drugs, biperiden and
morphine, using the 95th percentile property ranges. Here all
the properties were within the 95% percentile property range.
Figure 13, on the other hand, illustrates the properties of
bromocryptine (a CNS drug that originated from natural
products), which showed multiple violations (A). Similarly,
very small CNS drugs like acetazolamide may have a very large
polar surface area (B) yet do not have any BBB permeability
issues. Because 5% of approved drugs fall outside of this range,
one can see that on average, one of 20 properties may be
outside the qualifying range of approved CNS drugs.

Alternatively, if 10 properties in the Radar chart are routinely
visualized, on average one of every two approved drugs should
have a property violation. When a compound is selected as a
possible CNS drug candidate, the best chance for success would
be a compound that has properties that fall within the qualified
ranges (Table 1). During a lead optimization process, it is often
found that after satisfying various rule of five (ROF) type
rules,37,38 the goal still may not be achieved. A better strategy
for selecting and advancing lead compounds may be to use the
multicolor band Radar charting technology (Figure 14). In this
approach, the qualifying range (Table 1) was divided into three
color bands (QL to PL, blue; PL to PU, green; PU to QU,
yellow). The properties in the yellow band or below should go
outward during lead optimization until they reach the green
area. Similarly, properties in the blue region or above should go
inward during lead optimization until they reach the green area.

Classification Tree. Several simple recursive partition
(RP) classification trees were developed to differentiate
between CNS drugs and non-CNS oral drugs. The objective
was to keep the tree simple enough to be physically meaningful.
One reasonably simple tree is shown in Figure 15. The green
box represents higher probability for the CNS drugs and the
red box higher probability for the non-CNS oral drugs, with the

Figure 12. Multiple-physicochemical property analysis using Radar charts, a tool for lead identification. The shaded area represents the property
ranges of 95% of approved CNS drugs. The red line represents the properties of the test molecule. (A) Properties of biperiden, a muscarinic
antagonist used for parkinsonism. (B) Properties of morphine, the principal alkaloid in opium.
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probabilities represented in parentheses. The green connecting
arrows indicated that the condition was satisfied. When a
decision tree is generated, it is important that it should not be
overfitted (http://epub.ub.uni-muenchen.de/10589/1/
partitioning.pdf). Cross validation, keeping sufficient members
per nodes, using a minimum size tree helps to avoid the
problem of overfitting. During the generation of the current RP
tree, only physicochemical properties were used, the maximal
tree depth was four, the minimal number of samples per node
was 40, and the weighting method was by class. The split
method was “Gini”. The current RP model was validated
(Table 3) on a test set of 80 CNS and non-CNS drugs reported
in Annual Reports in Medicinal Chemistry Volumes 41−45, in
the articles “To Market, To Market”-2005 to 2009. Except for
tapentadol, the CNS versus non-CNS classification was
accepted from those articles. The model, using only a few
physicochemical properties, correctly classified 250 of the 317
(79%) CNS drugs used and 502 of the 626 (80%) non-CNS
oral drugs used in the training set. It also correctly classified
90% of the test set (79% of the CNS drugs), making it a useful
classification tree. During CNS drug optimization, if the lead
belongs to node 2 and, because of the pharmacophoric
restrictions, the PSA cannot be reduced, decreasing the volume

and number of atoms outside the rings may help the drug pass
into the brain. Similarly, if a carboxylic acid occupies node 7, it
may not be a good idea to optimize such a molecule as a CNS
candidate unless there is active transportation. The guidelines
for designing CNS drugs as learned from this classification tree
as well as from the distribution curves are summarized below
(the values within parentheses may be used as the direction of
change during lead optimization): (i) topological molecular
polar surface area (AP) of <76 Å2 (25−60 Å2), (ii) at least one
nitrogen [one or two, including one aliphatic amine (note that
one-third of CNS drugs did not have any basic amine)], (iii)
fewer than seven (two to four) linear chains outside the rings
(AP), (iv) fewer than three (zero or one) polar hydrogen
atoms, (v) volume of 740−970 Å3 (TP), (vi) solvent accessible
surface area of 460−575 Å2 (TP), (vii) positive QikProp
parameter CNS. (viii) Other properties can be included from
Table 1, preferably if the shape or gradient of the distribution
curves differs between CNS and non-CNS drugs. The general
strategy is CNS QL-QU for lead acceptance and PL-PU for the
direction of property modulation during lead optimization.
Effort will be to minimize the distance from the PL-PU range.
How many violations from the prescribed property profile

may be acceptable? Even though we provide seven parameters,

Figure 13. Multiple-physicochemical property analysis using Radar charts, a tool for lead identification. The shaded area represents the property
ranges of 95% of approved CNS drugs. The red line represents the properties of the test molecule. Even though for many CNS drugs, all the
properties were within our qualified range, this may not always be the case. Several CNS drugs, like bromocryptine (that originated from natural
products), showed multiple violations (A). Similarly, very small CNS drugs like acetazolamide may have very a large polar surface area (B) yet do not
have BBB permeability issues.
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one can have many more combinations of rules using Table 1.
Because QL to QU covered 95% of the approved CNS drugs,
10% property violations may be comfortably accepted. The
ultimate acceptability is determined by the therapeutic success.
When a large TPSA is unavoidable because of the nature of the
protein target, decreasing the molecular size and side chains
may help them pass into the brain. Carboxylic acids usually do
not pass into the brain even though several amino acids can
penetrate the BBB. The substructural elements that might be
useful for the CNS drug design are provided in Table 2. We
compiled Table 4 to compare the currently proposed profile
with the profiles proposed by different authors.

■ CONCLUDING REMARKS
The pharmaceutical research industry has undergone a major
change in recent years. Research facilities are slowly migrating
to the more cost-effective areas of the globe. Project survival is
becoming success-driven rather than need-based. However, the
pharmaceutical research environment will stabilize, and CNS
drug discovery research will accelerate soon. Both the CNS
drug delivery research for BBB noncrossing entities and
medicinal chemistry research to find CNS effective, BBB
crossing oral drugs will continue. This work is primarily to help
the medicinal chemistry research to select a better lead and to
direct lead optimization more efficiently. The comparative
analysis of physicochemical property profiles of 317 CNS and
626 non-CNS oral drugs helped to improve our understanding
of the differences between CNS and non-CNS oral drugs in
terms of the large number of physicochemical properties that

can be calculated using common molecular modeling packages.
The ultimate objective was to derive guidelines that could be
interpreted in terms of the chemical structure of the ligand to
aid in reducing risk in the lead optimization and candidate
selection phases of a discovery research project. The results
derived from this study provided an ideal property profile in
addition to a property modification strategy to utilize. A
classification tree was also developed to differentiate between
CNS drugs and non-CNS oral drugs. The property distribution
study and the classification tree provided the following
guidelines for designing high-quality CNS drugs: (i) topological
molecular polar surface area of <76 Å2 (25−60 Å2), (ii) more
than one nitrogen (one or two, including one aliphatic amine),
(iii) fewer then seven (two to four) linear chains outside of
rings, (iv) fewer than three (zero or one) polar hydrogen
atoms, (v) volume of 740−970 Å3, (vi) solvent accessible
surface area of 460−580 Å2, and (vii) a positive QikProp
parameter CNS. (viii) Other properties can also be included
from Table 1, preferably if the shape or gradient of the
distribution curves differs between CNS and non-CNS drugs.
The general strategies are as follows: (i) CNS QL-QU for lead
acceptance and (ii) PL-PU for the direction of property
modulation during lead optimization. The objective will be to
minimize the distance from the PL-PU range. The chemo-
informatics approaches to graphically analyzing multiple
properties efficiently were also presented. Appropriate
application of these results should be used in combination
with the discovery of flow information (e.g., pharmacokinetics,
PK/PD, selectivity, metabolic stability, P-gp substrate, etc.) to

Figure 14. Multiple-color band Radar chart, a tool for lead optimization. Here the combined shaded area represents the property ranges of 95% of
approved CNS drugs. The green band represents the most densely populated property range containing 50% of the approved CNS drugs. The red
line represents the properties of the test molecule (amitriptyline, a tertiary amine tricyclic antidepressant, is structurally related to both the skeletal
muscle relaxant cyclobenzaprine and the thioxanthene antipsychotics such as thiothixene). During lead optimization, it is often found that even after
ROF type rules have been satisfied the lead optimization process does not achieve the goal. In such cases, optimizing the physicochemical properties
toward the green region may have a better chance of success.
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help to expand our knowledge base, rather than used
independently to eliminate out of range compounds.39,40 The
criteria proposed here should be used to design only a certain
portion of compounds during lead selection and lead
optimization. Definitely, we do not recommend 100% of
compounds to follow the suggested profile that will hinder the
expansion of knowledge.

■ METHODS
Preparation of Molecular Data Sets. Only the approved CNS

and non-CNS drugs were analyzed to avoid skewed conclusions from
“unsuccessful” data. The data set collection had two steps.
Primary Data Collection. Initial collection of the approved drugs

was from several sources. The MDDR database from Symyx (http://
www.symyx.com/products/databases/bioactivity/mddr/index.jsp) is
an excellent source for collecting the structures, generic names,
activity classes, and mechanisms of action. Searching the development
phase field for “Launched” drugs identified 1844 approved drug
structures. Leeson et al.41 in their Supporting Information provided a
comprehensive list of pre-1983 and 1983−2002 oral drugs. DrugBank
(http://www.drugbank.ca/), maintained by the University of Alberta
(Edmonton, AB), is also an excellent resource for obtaining approved
drug names and structures with brief biological, biochemical, and

pharmaceutical properties. WOMBAT-PK from Sunset Molecular
(http://www.sunsetmolecular.com) provides the measured PK and
physicochemical properties of 1260 approved drugs. The chapter “To
Market, To Market-Year”42 in Annual Reports in Medicinal Chemistry is
an excellent source for the drugs approved in the previous year.

Data Curation. Cleaning the primary data required a major effort
and involved the following.

Merging Lists and Removing Duplication Using Accelrys/Pipeline
Pilot (AP). Because it was possible to download an SD file containing
all chemical structures of the approved drugs from a particular data
source, it was very important not to enter the same compound
multiple times in the final list.

Classification of the Preliminary List into CNS Drugs, Non-CNS
Oral Drugs, and Miscellaneous Compounds. “Drug category”,
“indication”, “mechanism of action”, and “pharmacodynamics” in
DrugBank were used for the initial identification of CNS and non-
CNS drugs. The following step was the consistency checkup, in
Wikipedia (http://en.wikipedia.org/wiki/Main_Page), Pharmacoge-
nomics Knowledge Base (http://www.pharmgkb.org/), Drugs@FDA
(http://www.accessdata.fda.gov/scripts/cder/drugsatfda/), and Sci-
Finder (http://www.cas.org/products/scifindr/). Most often, the
information provided in these resources was fairly consistent. The
pain-, allergy-, and muscle relaxation-related drugs may work
peripherally (PNS). Those compounds were accepted in the CNS
list, only when there was clear evidence of BBB penetration. For
example, most of the first-generation antihistamines went in the brain
and were accepted here in the CNS list. The number of such
compounds was a small fraction of the complete CNS list. The route
of administration field “dosage forms” in DrugBank was used to
identify the oral drugs.

Further Cleaning of the Non-CNS Drug List. Many non-CNS oral
drugs have CNS side effects either at normal therapeutic doses or at
large doses. The oral drugs with CNS side effects at therapeutic doses
were removed from the non-CNS oral drug list. The final list
contained 317 CNS drugs (Table S1 of the Supporting Information)
and 626 non-CNS oral drugs (Table S2 of the Supporting
Information). Table S1 contains structures, generic names, indications,
and mechanisms of action.

Computation and Analysis of Physicochemical Properties.
The property calculators from three widely used molecular modeling
companies, Schrodinger/QikProp (QP) (http://www.schrodinger.
com/products/14/17/), Tripos (TP) (http://www.tripos.com/index.
php?family=modules,SimplePage,,,&page=sybyl_ligand_based_
design), and Accelrys Pipeline Pilot (AP) Component Collections
(http://www.accelrys.com/products/pipeline-pilot/component-
collections.html), were used for calculating the various properties.

The SD files containing the two-dimensional (2D) structures of the
two classes of drugs were subjected to the following steps.

Counterions were removed, and the base structure was neutralized
where possible (except for quaternary ammonium salts) in AP.

2D structures were converted to 3D using Schrodinger/LigPrep. 3D
structures were used for property calculations in the three molecular
modeling packages listed above, even though some property
calculators require only the topological information.

Customized property distribution curves were generated using
internally modified AP components, where each nonterminal column
includes the value where it was centered and anything less than the
next bin. The left terminal column also includes all points below the
bin, and the right terminal column includes all points higher than the
last bin.

The “preferred” and “qualifying” property ranges were determined
using internally developed programs. The preferred ranges were the
shortest (most populated) property ranges covering 50% of the drugs.
The qualifying ranges were the shortest (most populated) property
ranges covering 95% of the drugs. The preferred range is a shorter
range within the qualifying range. Because the population density of
approved drugs is considerably higher in the preferred range than the
population density in the qualifying range, compounds satisfying the
preferred range are expected to have a better survival rate. The
population density usually increases if the percentage of drug coverage

Figure 15. Recursive partition (RP) model generated by Accelrys
cross-validated RP tree generator available under Pipeline Pilot
components for differentiating between non-CNS oral drugs (red)
and CNS drugs (green). The green connectors represent a satisfied
condition. Green nodes favored CNS drugs. The numbers after C and
N are the probabilities of CNS and non-CNS drugs, respectively, in
the node. The number within parentheses in each node gives the total
population of the drug candidates. During CNS drug optimization, if
the lead belongs to node 2 and, because of the pharmacophoric
restrictions, the PSA cannot be reduced, decreasing the volume may
help the drug pass into the brain. Similarly, if a carboxylic acid occupies
node 7, it may not be a good idea to optimize such a molecule as a
CNS candidate unless there is active transportation.
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Table 3. Test Set for the RP Classification Tree

generic name RP class nodea occupied indication ARMCb drug classc

Aliskiren non-CNS 2 antihypertensive 43
Alvimopan non-CNS 2 postoperative ileus 44
Ambrisentan non-CNS 2 pulmonary arterial hypertension 43
Armodafinil non-CNS 2 sleep disorder treatment 45 CNS
Asenapine CNS 7 antipsychotic 45 CNS
Besifloxacin non-CNS 2 antibacterial 45
Blonanserin CNS 7 antipsychotic 44 CNS
Ciclesonide non-CNS 2 asthma, COPD 41
Clevudine non-CNS 2 hepatitis B 43
Clofarabine non-CNS 2 anticancer 41
Conivaptan non-CNS 2 antidiuretic 42
Dapoxetine CNS 7 premature ejaculation 45
Darifenacin CNS 7 urinary incontinence 41
Darunavir non-CNS 2 antiviral HIV 42
Dasatinib non-CNS 2 anticancer 42
Decitabine non-CNS 2 anticancer 42
Deferasirox non-CNS 2 chronic iron overload 41
Desvenlafaxine CNS 7 antidepressant 44 CNS
Dexlansoprazole non-CNS 2 gastroesophogeal reflux disease 45
Doripenem non-CNS 2 antibiotic 41
Dronedarone non-CNS 2 antiarrhythmic 45
Eberconazole CNS 7 antifungal 41
Eltrombopag non-CNS 2 antithrombocytopenic 45
Entecavir non-CNS 2 antiviral 41
Eslicarbazepine-acetate CNS 7 antiepileptic 45 CNS
Eszopiclone non-CNS 2 hypnotic 41 CNS
Etravirine non-CNS 2 antiviral 44
Febuxostat non-CNS 2 antihyperuricemic 45
Fesoterodine non-CNS 6 overactive bladder 44
Garenoxacin non-CNS 2 anti-infective 43
Imidafenacin CNS 7 overactive bladder 43
Indacaterol non-CNS 2 chronic obstructive pulmonary disease 45
Ivabradine non-CNS 6 angina pectoris 42
Ixabepilone non-CNS 2 anticancer 43
Lacosamide CNS 7 anticonvulsant 44 CNS
Lapatinib non-CNS 2 anticancer 43
Lenalidomide non-CNS 2 immunomodulator 42
Lisdexamfetamine non-CNS 2 ADHD 43 CNS
Lubiprostone non-CNS 2 chronic idiopathic constipation 42
Luliconazole non-CNS 2 antifungal 41
Lumiracoxib CNS 7 anti-inflammatory 41
Maraviroc non-CNS 6 anti-infective 43
MinodronicAcid non-CNS 2 osteoporosis 45
Mozavaptan non-CNS 6 hyponatremia (low blood sodium level) 42
Nalfurafine non-CNS 2 pruritus 45
Nelarabine non-CNS 2 anticancer 42
Nepafenac non-CNS 2 anti-inflammatory 41
Nilotinib non-CNS 2 anticancer 43
Pirfenidone CNS 7 idiopathic pulmonary fibrosis 44
Posaconazole non-CNS 2 antifungal 42
Pralatrexate non-CNS 2 anticancer 45
Prasugrel CNS 7 antiplerelet therapy 45
Raltegravir non-CNS 2 anti-infective HIV 43
Ramelteon CNS 7 insomonia 41 CNS
Ranolazine non-CNS 6 antiangina 42
Rasagiline CNS 7 Parkinson’s disease 41 CNS
Retapamulin non-CNS 2 anti-infective 43
Rimonabant non-CNS 6 antiobesity 42
Rivaroxaban non-CNS 2 anticoagulant 44
Rotigotine CNS 7 anti-Parkinson 42 CNS
Rufinamide CNS 7 anticonvulsant 43 CNS
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is lowered. However, decreasing the percentage of drug coverage
increases the chance of neglecting good compounds. Preferred and
qualifying ranges described here were a compromise between these
two opposing conditions. Should all approved drugs be considered to
derive the acceptable property ranges? Omitting 5% of the drugs
would help to neglect the outliers resulting from prodrugs or
compounds with active transport mechanisms, which are rare, but the
properties of such compounds are often well outside the more
common range. The 95% ranges were fairly wide and would
accommodate most compounds that could be optimized within an

acceptable time period. The preferred range was a highly populated
narrow band covering 50% of the approved drugs, which would be
used as a directional guide for future compound design by moving the
property closer to this range.

Qualitative rules for CNS and non-CNS drugs were derived from
the properties whose distribution curves have different shapes or
gradients. The shape of a distribution curve depended on the location
and size of the bin. When distribution curves are generated, the data
range is rounded and the rounded range is divided into approximately
10 bins.

Table 3. continued

generic name RP class nodea occupied indication ARMCb drug classc

Saxagliptin non-CNS 2 antidiabetic 45
Silodosin non-CNS 2 dysuria (painful urination) 42
Sitafloxacin non-CNS 2 antibacterial 44
Sitagliptin non-CNS 2 antidiabetic 42
Sitaxsentan non-CNS 2 pulmonary hypertension 42
Sorafenib non-CNS 2 anticancer 41
Sunitinib non-CNS 2 anticancer 42
Tafluprost non-CNS 3 antiglaucoma 44
Tamibarotene non-CNS 6 anticancer 41
Tapentadol CNS 7 analgesic 45 CNS
Telbivudine non-CNS 2 hepatitis B 42
Tigecycline non-CNS 2 antibiotics 41
Tipranavir non-CNS 2 HIV 41
Tolvaptan non-CNS 6 hyponatremia, antidiuretic 45
Udenafil non-CNS 2 erectile dysfunction 41
Ulipristalacetate non-CNS 6 contraceptive 45
Varenicline CNS 7 nicotine dependence 42 CNS
Vildagliptin non-CNS 2 antidiabetic 43
Vorinostat non-CNS 2 anticancer 42

aCheck Figure 15 for node description. bAnnual Reports in Medicinal Chemistry volume. cThe drug class was accepted from ARMC with only one
change, tapentadol, which was reported to be centrally acting.

Table 4. Comparison to the Currently Proposed Physicochemical Property Profile with the Prior Art

property name current suggestiona prior art conclusion

TPSA <76 Å2 (25−60 Å2) <90 Å2,22 60−70
Å2,29 40−90
Å234

TPSA was a better differentiator for CNS and non-CNS drugs than the 3D structure-
based PSA

no. of N ≥1 (1−2, including one
aliphatic amine)

not available was combined with oxygen count as shown below

molecular flexibility <7 (2−4) linear chains outside
rings; 0−8 (1−4) rotatable
bonds

≤5 rotatable
bonds41

the current may be qualitatively comparable to that of Iyer et al.,43 who concluded
that some amount of flexibility enhances log BB but too much flexibility will
diminish log BB

no. of polar hydrogen
atoms per H bond
donor

<3 (0−1) <329

volume 460−1250 Å3 (740−970 Å3) not available it is related to molecular size, and most workers provided guidance for MW (see
below)

solvent accessible
surface area

320−735 Å2 (455−575 Å2) not available it is related to molecular size, and most workers provided guidance for MW (see
below)

QikProp parameter
CNS

>0

no. of carboxylic acids 0 (unless an amino acid) avoid acid29

dealing polar
compounds

decrease size and side chains

logD at pH 7.4 −0.55 to 5.5 (1.2−3.1)b 1.4−2.6,17 1−421 in the case of computed logD, validation of the data with a few experimental logD
values is advised

molecular weight 140−450 (250−355)b ≤450,21 ≤36034

N + O 1−7 (2−4)b ≤527

ClogP − (N + O) not available >027 should be used along with the previous rule
other properties derived from Table 1, QL-QU

(PL-PU)
not available inclusion of other properties is advised only if distributions of CNS and non-CNS

drugs differ in shape or gradient
aThe ranges within the parentheses are preferred and should be used to derive the direction for property modulation during lead optimization.
bDerived from Table 1 using the general guideline.
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Several classification trees were derived to differentiate between
CNS and non-CNS oral drugs. The most promising one was presented
here.
Evaluation and Analysis of Substructural Elements.

SARvision (http://www.chemapps.com) was used to evaluate the
relevant substructural units in the CNS drug set. Only the
substructures that were present in 5% of the CNS data set were
used to check their percentage of occurrence in the non-CNS drug set.
The comparative occurrence was used to classify the substructure’s
class (C for CNS, N for non-CNS, and E for equally favored).
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